2. Trigonometry Exercises
By Dan Chicos. Last modified: 16 Jan 2023.
Question 1
(a) Express `5cot^2 x-2cscx+2` in terms of `cscx`.
(b) Hence, solve the equation `5cot^2 x-2cscx+2=0` for `0<=x<=2pi`.
Solution (a)
Make `cot^2 x` the subject in the identity `1+cot^2 x=csc^2 x` and substitute it in the given expression:
`1+cot^2 x=csc^2 x`
`=>` `cot^2 x=csc^2 x -1`
`5cot^2 x-2 cscx+2` `=5(csc^2 x -1)-2cscx+2`
`=5csc^2 x-5-2cscx+2`
`=5csc^2 x-2cscx-3`
Solution (b)
From (a),
`5cot^2 x-2cscx+2` `=5csc^2 x-2cscx-3,` therefore we solve `5csc^2 x-2cscx-3=0`.
Let `y=cscx` and substitute it in `5csc^2 x-2cscx-3=0`
We can solve `5y^2-2y-3=0` by factorisation or using quadratic formula.
* Using factorisation, we write `-2y=ay+by` where `a` and `b` are 2 integers such that
`a+b=-2` and `axxb=5xx(-3)=-15`. The integers must be `a=-5` and `b=3`,
therefore `-2y=ay+by`
`=-5y+3y`.
`5y^2-2y-3`
`=5y^2-5y+3y-3`
`=5y(y-1)+3(y-1)`
`=(y-1)(5y+3)`
`=0`
`y-1=0` or `5y+3=0`
`=>` `y=1` or `y=-3/5`
* Using quadratic formula `y=(-b+-sqrt(b^2-4ac))/(2a)`.
In `5y^2-2y-3=0,` `a=5,` `b=-2` and `c=-3,` doing the substitution we get
`y=(-(-2)+-sqrt((-2)^2-4xx5xx(-3)))/(2xx5)`
`=(2+-sqrt(4+60))/10`
`=(2+-8)/10`
`y=(2+8)/10=1` or `y=(2-8)/10=-6/10=-3/5`
`y=cscx`
`=>` `cscx=1` or `cscx=-3/5`
`cscx=1/sinx=1`
`=>` `sinx=1`
`=>` `x=sin^-1 1=pi/2`, `x=pi/2 in [0,2pi]`
`cscx=1/sinx=-3/5`
`=>` `sinx=-5/3`, but `-1<=sinx<=1`
`=>` `sinx=-5/3` has no real solution.
`:. x=pi/2 ~~ 1.57` is the only solution.
We can see this is indeed the case when we view the graph of `y=5cot^2 x-2cscx+2` in the region `0<=x<=2pi`.
Question 2
Find the exact value of `sin((5pi)/12)`.
Solution
It's easier to find the value of `sin((5pi)/12)` if we change the angle from radians to degrees.
`(5pi)/12 = ((5pi)/12)xx(180/pi)`
=`(5xx180)/12 = 75^@`
Since `sin75^@` is not an exact ratio, we write the angle as a sum of `45^@` and `30^@` and use the sum identity formula:
`sin75^@ = sin(45^@+30^@)`
`= sin(45^@)cos(30^@) + cos(45^@)sin(30^@)`
`= sqrt2/2xxsqrt3/2+ sqrt2/2xx1/2`
`= sqrt6/4+sqrt2/4`
`= (sqrt6 + sqrt2)/4`
`:. sin((5pi)/12) = (sqrt6 + sqrt2)/4`